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Abstract
Using the idea of shape invariance with respect to the main quantum number n,
we represent Lie algebras u(2) and u(1, 1). The induced metric by the Casimir
operator of Lie algebras u(2) and u(1, 1) leads us to obtain new solutions of
the Dirac equation corresponding to a spin- 1

2 charged particle on the 2D sphere
S2 and the hyperbolic plane H 2 in the presence of a magnetic monopole. It is
shown that the related new spinors represent the supersymmetry algebra, and
that they satisfy shape invariance equations with respect to n.

PACS numbers: 02.30.Gp, 03.65.−w, 02.20.Sv, 02.10.Nj

1. Introduction

Shape invariance is one of the most interesting aspects of the theory of exactly solvable
systems [1–13] in the framework of supersymmetric quantum mechanics [14–20]. In fact,
all solvable problems of quantum mechanics are either supersymmetric or can be made so.
In the formalism of shape invariance, partner Hamiltonians are related by supersymmetry
transformations. The spectra of two partner Hamiltonians are identical, except for the ground
state. Two partner Hamiltonians factorize out into the product of the raising and the lowering
operators, and the energy eigenfunctions of these systems transform into each other with
the help of these operators [6, 8, 20]. Therefore, shape invariance symmetry provides the
possibility of exactly determining the corresponding wavefunction of the problem, using
algebraic procedure. However, it has been shown that a wide range of shape invariance
potentials lie in two different classes [21, 22]. In the first class, which is obtained from
factorization of the Schrödinger equation with respect to the main quantum number n, the
superpotential is explained in terms of the master function, the corresponding weight function,
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the main quantum number n and also the secondary quantum number m [22] (n and m are
non-negative integers and the maximum value of m is equal to n). The second class is derived
from factorizing the Schrödinger equation with respect to the secondary quantum number m,
and the superpotential is explained in terms of the master function, its weight function and
also the secondary quantum number m [21, 22].

When a Schrödinger equation is exactly solvable for a potential, then there always exists
a Dirac equation corresponding to it which is exactly solvable. Sukumar has shown how to
exploit the supersymmetry along with shape invariance to obtain the complete energy spectrum
and eigenfunctions of the Dirac equation corresponding to a 3D Coulomb field [23]. Using
the supersymmetry methods developed in the category of 1D shape invariant potentials, in the
framework of chiral and complex supersymmetry, the spectrum and the eigenfunctions of the
Dirac equation of 2D and 4D Euclidean spaces in the presence of external fields have been
studied [24]. Also, using the idea of shape invariance, the relativistic bound-state spectra and
spinor wavefunctions of Dirac–Coulomb,Dirac oscillator, Dirac–Morse, Dirac–Rosen–Morse,
Dirac–Eckart, Dirac–Pöschl–Teller and Dirac–Scarf potentials have been obtained [25–27].
In [28], using the generators of Lie algebra gl(2, c) obtained from the idea of shape invariance
with respect to the parameter m we obtained a solution of the massless Dirac equation for a
charged particle with spin- 1

2 on the homogeneous manifold SL(2, c)/GL(1, c) in the presence
of a magnetic monopole field.

In this paper, using the idea of shape invariance with respect to the main quantum number
n, based on the master function theory, we introduce new representations for the Lie algebras
u(2) and u(1, 1). Then, comparing the Casimir operator of these Lie algebras with the
general form of the Laplace–Beltrami operator for a 2D manifold, we obtain the metric of
the simplest homogeneous manifolds non-zero constant curvature S2 = SU(2)/U(1) and
H 2 = SU(1, 1)/U(1) in terms of the master function. It is shown that shape invariance with
respect to n leads us to solve the massless Dirac equation in Minkowskian spacetime with
the space part of S2 or H 2, in the presence of a magnetic monopole. In fact, we give a new
analysis of the integrable systems corresponding to a massless spin- 1

2 charged particle on the
S2 and H 2. Also, we prove that the spinors of the Dirac equation represent supersymmetry
algebra and shape invariance symmetry with respect to n.

2. Towards the new bases of representation for Lie algebras u(2) and u(1, 1)

In the master function theory discussed in [21, 29, 30] we choose the master functionA(x) as
an exactly second order (A′′(x) �= 0), and without double root. Also, suppose the non-negative
weight functionW(x) in an interval (a, b) isW(x) = Aλ(x). The parameter λ and the interval
(a, b) can be determined so that the expression Aλ+1(x) and all of its derivatives vanish at the
end points of the interval. It is clear that the expression A−λ(x)(Aλ+1(x))′ = (λ + 1)A′(x)
is linear in terms of x. Therefore, the required conditions of the master function theory are
established. Now using the shape invariance with respect to the parameter n, introduced in
[29], we obtain the following factorized differential equations

B+(n)B−(n)�n,m(x) = E(n,m)�n,m(x)
(1)

B−(n)B+(n)�n−1,m(x) = E(n,m)�n−1,m(x)

where the explicit forms of the raising and the lowering operators corresponding to the
parameter n are, respectively;

B+(n) = A(x)
d

dx
+

1

2
(n + 2λ)A′(x) B−(n) = −A(x) d

dx
+

1

2
nA′(x). (2)
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The eigenvalueE(n,m) and the associated special functions are expressed in terms of master
function A(x) and the parameter λ as

E(n,m) = −(n−m)(n +m + 2λ)δ2 (3)

�n,m(x) = an,m

Aλ+m
2 (x)

(
d

dx

)n−m
An+λ(x). (4)

In the above equations, the constant δ is either a real number or a pure imaginary number, and
is defined in terms of the master function parameters as

δ :=
√

−A
′2(0)− 2A′′A(0)

4
(5)

and an,m is the normalization constant. Now, by choosing the following recursion relation
between the normalization coefficients an,m

an,m = n +m + 2λ

2n + 2λ

an−1,m√
E(n,m)

(6)

one may write down the shape invariance equations (1) as the raising and the lowering
equations:

B+(n)�n−1,m(x) =
√
E(n,m)�n,m(x) (7a)

B−(n)�n,m(x) =
√
E(n,m)�n−1,m(x). (7b)

To obtain relation (6) we just need to multiply both sides of (7a) by the factor Am/2(x) and
then compare the coefficients of xn+m on both sides of the resulting equation.

We shall now use these results to obtain the new differential representations of Lie algebras
u(2) and u(1, 1) in terms of the master function. Defining the new operators J+ and J− as

J+ = eiφ

[
∂

∂θ
− iA′(x)

2

∂

∂φ
+

1 + 2λ

2
A′(x)

]
x=x(θ)

(8)

J− = e−iφ

[
− ∂

∂θ
− iA′(x)

2

∂

∂φ

]
x=x(θ)

and the new functions�n,m(θ, φ) as

�n,m(θ, φ) = [einφ�n,m(x)]x=x(θ) (9)

and also using the shape invariance equations (1), one can conclude the following factorized
equations:

J+J−�n,m(θ, φ) = E(n,m)�n,m(θ, φ)
(10)

J−J+�n−1,m(θ, φ) = E(n,m)�n−1,m(θ, φ).

The change of variable x = x(θ) is obtained by solving the first-order differential equation

dθ = dx

A(x)
. (11)

Note that the variable φ exists in the interval 0 � φ < 2π . Now, it is easy to verify that the
operators J+ and J− together with the operators

J3 = −i
∂

∂φ
and I = 1 (12)
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constitute the commutative relations of the Lie algebras u(2) and u(1, 1) as

[J+, J−] = 2δ2J3 + (2λ + 1)δ2 [J3, J±] = ±J± [J±, I ] = [J3, I ] = 0. (13)

For instance, the value of the constant δ is equal to 1 and i for A(x) = 1 + x2 and A(x) =
1 − x2, respectively. Therefore, (13) constitute commutation relations corresponding to the
Lie algebras u(2) and u(1, 1) for the master functions A(x) = 1 + x2 and A(x) = 1 − x2,
respectively. These are the reverse of the results of [30] for the master functionsA(x) = 1 +x2

and A(x) = 1 − x2. That is commutation relations (2.15) of [30], for A(x) = 1 + x2

and A(x) = 1 − x2, reduce to the commutation relations of Lie algebras u(1, 1) and u(2),
respectively. From (7), one can conclude that the operators J+ and J− satisfy the following
raising and lowering relations:

J+�n−1,m(θ, φ) =
√
E(n,m)�n,m(θ, φ)

(14)
J−�n,m(θ, φ) =

√
E(n,m)�n−1,m(θ, φ).

Results (14) together with

J3�n,m(θ, φ) = n�n,m(θ, φ) I�n,m(θ, φ) = �n,m(θ, φ) (15)

state that, for a given m, the new functions�n,m(θ, φ) with different values of n � m are the
representation bases of the Lie algebras u(2) and u(1, 1). This is the reverse of the result of
[30] for quantum numbers n and m. The Casimir operator of the generators J+, J−, J3 and I is

H = −J+J− − δ2J 2
3 − 2λδ2J3 + 1

2 (2λ + 1)δ2 (16)

with the following eigenvalue equation

H�n,m(θ, φ) = −(m2 + 2mλ− λ− 1
2

)
δ2�n,m(θ, φ). (17)

Since the eigenvalue of the Casimir operator is independent of n, and functions�n,m(θ, φ)with
n � m are eigenfunctions of Casimir operator H, then we have an infinite-fold degeneracy.

3. New exact solutions for the Dirac equation corresponding to a massless spin- 1
2

charged particle on the 2D sphere S2 and the hyperbolic plane H2

To construct a Schrödinger Hamiltonian, we can determine the metric gij , the gauge potential
Ai and the electic potential V by writing the Casimir operator H as follows in terms of the
Laplace–Beltrami operator

− 1
2H = − 1

2D
A
j D

Aj + V. (18)

The covariant derivativeDA
j is written in terms of gauge and Levi-Civita connections

DA
j := ∇j − iAj (19)

where the index j takes the values θ and φ. Comparing the second-order partial derivatives
of both sides of (18) we obtain a 2D manifold with the following metric:

gij =
(

1 0
0 2

A′′A(x)

)
. (20)

The non-vanishing components of the Christoffel symbols as well as the Ricci tensor of metric
(20) are

�θφφ = A′(x)
A′′A(x)

�
φ

θφ = − 1
2A

′(x) (21a)

Rθθ = δ2 Rφφ = 2δ2

A′′A(x)
. (21b)
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The manifold described by metric (20) has the constant Ricci scalar curvature:

R = 2δ2. (22)

Similar to [30], we can easily show that metric (20) can be derived from an appropriate
parametrization in terms of the variables θ and φ for the homogeneous manifolds S2 =
SU(2)/U(1) and H 2 = SU(1, 1)/U(1). From Ricci scalar curvature (22), it is clear that the
described manifolds by the metric (20) are S2 and H 2 for the master functionsA(x) = 1 + x2

and A(x) = 1 − x2, respectively.
Let us now consider the 1 + 2 Minkowskian spacetime metric as

gµν =

1 0 0

0 −1 0
0 0 − 2

A′′A(x)


 . (23)

Indices µ and ν denote rows and columns by the time variable t, space variables θ and φ.
It is evident, of course, that just for the 1 + 2 Minkowskian spacetime metric (23), the non-
vanishing components of the Christoffel symbols and the Ricci tensor are calculated similar
to (21).

The generators of the Clifford algebra that generate 1 + 2 diagonal metric ηab :=
(1,−1,−1) by the following equation [31]

γ aγ b = ηabI2×2 − iεabcγc (24)

are defined as the matrices

γ 0 = σ 3 γ 1 = iσ 2 γ 2 = −iσ 1 (25)

where σ 1, σ 2 and σ 3 are the known Pauli matrices. It is obvious that indices a, b and c take the
values 0, 1 and 2. The massless Dirac operator of 1 + 2 Minkowskian spacetime corresponding
to the metric (23) and Clifford generators (25) is defined as

D1+2 = −iγ aEaµ
(
∂µ − iAµ + 1

8ωµbc[γ
b, γ c]

)
. (26)

At is a scalar potential corresponding to an electric field, Aθ and Aφ are the components of a
gauge potential corresponding to a magnetic field. The 3-bein Eaµ and its inverse, i.e. eµa ,
establish a connection between the Minkowskian diagonal metric ηab and the spacetime metric
gµν (as well as their inverse):

Ea
µηabEb

ν = gµν Ea
µgµνEb

ν = ηab (27a)

eµ
agµν eν

b = ηab eµ
aηab eν

b = gµν. (27b)

Using (27) the 3-beins for the metric (23) are calculated as

Ea
µ = (

eµ
a
)−1 =




1 0 0
0 −1 0

0 0
√
A′′A(x)

2


 . (28)

Also, using (21a) and (28) together with the equation

∂µ eν
a − �λµν eλ

a + ωµ
a
beν

b = 0 (29)

we calculate the non-vanishing components of the spin connection

ωφ 12 = −ωφ 21 = A′(x)√
2A′′A(x)

. (30)
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Now the massless time-dependent Dirac equation corresponding to a spin- 1
2 charged

particle on the 2D sphere S2 and the hyperbolic plane H 2 in the presence of a magnetic field
and an electric field can be written as follows

D1+2�(t; θ, φ) = 0 (31)

or

−i




∂
∂t

− iAt − ∂
∂θ

− i
√
A′′A(x)

2
∂
∂φ

+ iAθ

−
√
A′′A(x)

2 Aφ + 1
4A

′(x)
∂
∂θ

− i
√
A′′A(x)

2
∂
∂φ

− iAθ − ∂
∂t

+ iAt

−
√
A′′A(x)

2 Aφ − 1
4A

′(x)



�(t; θ, φ) = 0. (32)

To obtain (32) we have substituted (25), (28) and (30) in (26). In this paper we assume that
the electric field does not exist, i.e. At = 0, and that the magnetic field is static, i.e. ∂Aµ

∂t
= 0,

with the axial symmetry Aµ = Aµ(θ) for µ = θ and φ. Therefore, if we assume the time
evolution and the spatial components of the spinors as

�(t; θ, φ) = e−i
√
E(n,m)t

(
ψ1(θ, φ)

iψ2(θ, φ)

)
(33)

then from the Dirac equation (32) we get the following two equations:(
∂

∂θ
− i

√
A′′A(x)

2

∂

∂φ
− iAθ −

√
A′′A(x)

2
Aφ − 1

4
A′(x)

)
ψ1(θ, φ) =

√
E(n,m)ψ2(θ, φ)

(
− ∂

∂θ
− i

√
A′′A(x)

2

∂

∂φ
+ iAθ −

√
A′′A(x)

2
Aφ +

1

4
A′(x)

)
ψ2(θ, φ) =

√
E(n,m)ψ1(θ, φ).

(34)

Let us assume that the functionality of φ is some phase factor for the functions ψ1(θ, φ) and
ψ2(θ, φ). It is easy to show that the existence of difference in phases between the functions
ψ1(θ, φ) and ψ2(θ, φ) has no effect on the determination of the magnetic field. Therefore, we
choose the same phase factor as follows

ψ1(θ, φ) = eikφψ1(θ) ψ2(θ, φ) = eikφψ2(θ). (35)

To compare the derived results with (7), we reduce equations (34) with respect to φ. Thus, by
considering relation (11) we obtain

B+(n) =
[

d

dθ
− iAθ(λ; θ) + (k − Aφ(n, λ; θ))

√
A′′A(x)

2
− 1

4
A′(x)

]
x=x(θ)

(36)

B−(n) =
[
− d

dθ
+ iAθ(λ; θ) + (k − Aφ(n, λ; θ))

√
A′′A(x)

2
+

1

4
A′(x)

]
x=x(θ)

with

Aθ(λ; θ) =
[ i

4
(1 + 2λ)A′(x)

]
x=x(θ)

Aφ(λ, n; θ) =
[
k − (n + λ)A′(x)√

2A′′A(x)

]
x=x(θ)

. (37)

The 2-form of the magnetic field corresponding to the gauge potential (37) is calculated as

B(λ, n; θ) =
[−2(n + λ)δ2

√
2A′′A(x)

]
x=x(θ)

dθ ∧ dφ. (38)
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It can be proved that the equation
δ

tan δθ
= −A

′(x)
2

(39)

is the solution of the differential equation (11). It is evident that using the change of variable
(39), one may obtain the Minkowskian spacetime metric (23) as

gµν =

1 0 0

0 −1 0

0 0 − sin2 δθ
δ2


 (40)

where it is related to the sphere S2 and the hyperplane H 2 depending upon which one of the
values δ = 1 and δ = i is chosen, respectively. Also, the 2-form of the magnetic field (38)
becomes

B(λ, n; θ) = −(n + λ)δ2 sin δθ

δ
dθ ∧ dφ. (41)

Thus, in this paper, the magnetic monopole field (41) has been quantized in terms of the
main quantum number n � m. This is the reverse of the result of [28], because the magnetic
monopole field had been quantized there in terms of the secondary quantum number m � n.
Also, the above comparison clearly indicates that the spinors are labelled by n and m as

�n,m(t; θ, φ) = e−i
√
E(n,m)t

(
ψn−1,m(θ, φ)

iψn,m(θ, φ)

)
(42)

=: e−i
√
E(n,m)t�n,m(θ, φ)

where we have used the following notation:

ψn,m(θ, φ) = eikφ�n,m(x(θ)). (43)

It is clear that apart from a phase factor eikφ , the components of the spinors on the S2 and
H 2 are expressed in terms of the associated special functions, the hyperbolic Gegenbauer and
Gegenbauer:

�n,m(x) −→ P (λ)
n,m(x) = an,m

(1 + x2)λ+ m
2

(
d

dx

)n−m
(1 + x2)n+λ (44a)

�n,m(x) −→ P (λ)n,m(x) = an,m

(1 − x2)λ+m
2

(
d

dx

)n−m
(1 − x2)n+λ (44b)

respectively. The spinors�n,m(t; θ, φ) describe the motion of a spin- 1
2 charged particle in the

presence of the magnetic monopole field (41) on the 2D sphere S2 and the hyperbolic plane
H 2, depending upon which one of the master functions A(x) = 1 + x2 and A(x) = 1 − x2

is chosen. The matrix components of the time-independent Dirac equation (31) can be
written as

b+(λ, n)ψn−1,m(θ, φ) =
√
E(n,m)ψn,m(θ, φ)

(45)
b−(λ, n)ψn,m(θ, φ) =

√
E(n,m)ψn−1,m(θ, φ)

where the raising and lowering operators of the spinor components are

b+(λ, n) = ∂

∂θ
− i

δ

sin δθ

∂

∂φ
− iAθ(λ; θ)− δ

sin δθ
Aφ(λ, n; θ) +

δ

2 tan δθ
(46)

b−(λ, n) = − ∂

∂θ
− i

δ

sin δθ

∂

∂φ
+ iAθ(λ; θ)− δ

sin δθ
Aφ(λ, n; θ)− δ

2 tan δθ
.

Equations (45) represent 2D shape invariance equation components of spinors with respect to
the main quantum number n on the S2 and H 2 for A(x) = 1 + x2 (δ = 1) and A(x) = 1 − x2

(δ = i), respectively.
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4. Representation of N = 1 chiral supersymmetry algebra and shape invariance
symmetry by the Dirac new spinors

Now, we show that the spinors �n,m(θ, φ) represent a supersymmetry algebra N = 1, and
also a shape invariance symmetry with respect to the main quantum number n. Using (45),
we can easily see that they satisfy the Dirac eigenvalue equation

D2(λ, n)�n,m(θ, φ) =
√
E(n,m)�n,m(θ, φ) (47)

in which the time-independent Dirac operatorD2(λ, n) is

D2(λ, n) :=
(

0 −ib−(λ, n)
ib+(λ, n) 0

)
. (48)

The square of the Dirac operator

D2
2(λ, n) =

(
b−(λ, n)b+(λ, n) 0

0 b+(λ, n)b−(λ, n)

)
=: H(λ, n) (49)

leads to two partner Hamiltonian on S2 andH 2 with shape invariance symmetry on n. For the
fermionic creation and annihilation operators [24]

Q±(λ, n) := Q±b∓(λ, n) (50)

with

Q± := ∓ i

2
(σ 1 ± iσ 2) (51)

one can obtain the following chiral decomposition for the time-independent Dirac operator:

D2(λ, n) = Q+(λ, n) +Q−(λ, n). (52)

Therefore, it becomes obvious that two of the fermionic operators Q+(λ, n) and Q−(λ, n)
together with the bosonic operator H(λ, n), i.e. the square of the time-independent Dirac
operator, satisfy the supersymmetry algebra N = 1 as

Q2
±(λ, n) = 0 H(λ, n) = {Q+(λ, n),Q−(λ, n)} [Q±(λ, n),H(λ, n)] = 0. (53)

The representation of supersymmetry algebra on S2 and H 2 by the spinors �n,m(θ, φ) is

Q+(λ, n)�n,m(θ, φ) =
√
E(n,m)

(
ψn−1,m(θ, φ)

0

)

Q−(λ, n)�n,m(θ, φ) =
√
E(n,m)

(
0

iψn,m(θ, φ)

)
(54)

H(λ, n)�n,m(θ, φ) = E(n,m)�n,m(θ, φ).

The appropriate operators for representing the shape invariance symmetry on S2 and H 2

by the spinors�n,m(θ, φ) are

B±(λ, n) :=
(√

E(n,m)

E(n−1,m)b±(λ, n − 1) 0

0 b±(λ, n)

)
. (55)

With the help of (45) one can easily conclude the shape invariance equations on 2D manifolds
S2 and H 2 for the spinors�n,m(θ, φ):

B+(λ, n)�n−1,m(θ, φ) =
√
E(n,m)�n,m(θ, φ)

(56)
B−(λ, n)�n,m(θ, φ) =

√
E(n,m)�n−1,m(θ, φ)

or

B+(λ, n)B−(λ, n)�n,m(θ, φ) = E(n,m)�n,m(θ, φ)
(57)

B−(λ, n)B+(λ, n)�n−1,m(θ, φ) = E(n,m)�n−1,m(θ, φ).
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5. Conclusion

Therefore, using the idea of shape invariance with respect to the main quantum number n,
we derived new bases of representation for Lie algebras u(2) and u(1, 1). Also, with the
help of the theory of a master function we have obtained the new solutions (42) for the
Dirac equation corresponding to a massless spin- 1

2 charged particle on the 2D sphere S2 and
the hyperbolic plane H 2 in the presence of the magnetic monopole field (41) quantized by
the main quantum number n. Time-independent spinors corresponding to these solutions
represent supersymmetry algebraN = 1 as (54). They also realize the representation of shape
invariance symmetry with respect to the main quantum number n as (56) and (57).
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